Processing math: 1%

CIE Extended Mathematics (2017-18) Mensuration

 Mensuration



















































































































































































11 ( 2018/m/42/img/q2)
The vertices of a square ABCD lie on the circumference of a circle, radius 8 cm. (a) Calculate the area of the square.cm^2[2]
(b) (i) Calculate the area of the shaded segment cm^2[3] (ii) Calculate the perimeter of the shaded segment cm [4]
12( 2017/w/21/img/q20)
(\mathbf{a}) A cylinder has height 20 cm. The area of the circular cross section is 74 cm^{2} Work out the volume of this cylinder. \mathrm{cm}^{3}\left[1\right]
(b) Cylinder A is mathematically similar to cylinder B
The height of cylinder A is 10 cm and its surface area is 440 cm^{2} The surface area of cylinder B is 3960cm^{2} Calculate the height of cylinder B. cm [3]
13 ( 2018/w/21/img/q10)
A water tank in the shape of a cuboid has length 1.5 metres and width l metre. The water in the tank is 60 centimetres deep. Calculate the number of litres of water in the tank. litres[3]
14 ( 2017/m/22/img/q9)
The diagram shows a pyramid with a square base ABCD. All the sloping edges of the pyramid are 20cm long and AC=17 cm.
Calculate the height of the pyramid. cm [3]
15 ( 2018/s/22/img/q14)
The diagram shows a solid cuboid with base area 7 cm^{2} The volume of this cuboid is 21 cm^{3}. Work out the total surface area. cm^2[3]
16 ( 2018/s/22/img/q15)
Find the volume of a cylinder of radius 5 cm and height 8 cm. Give the units of your answer.[3]
17( 2018/w/22/img/q22)
The diagram shows a cuboid with dimensions 5.5 cm, 8cm and 16.2 cm. Calculate the angle between the line AB and the horizontal base of the cuboid. [4]
18( 2017/s/23/img/q5)
Calculate the volume of a hemisphere with radius 3.2 cm. [The volume, V, of a sphere with radius r is V=\frac{4}{3}\pi r^{3}.] [2]
19 ( 2017/\mathrm{s/41/img/q5a) } (a) The diagram shows a cylindrical container used to serve coffee in a hotel.
The container has a height of 50cm and a radius of 18 ctm.
(i) Calculate the volume of the cylinder and show that it rounds to 50 900 cm^{3}, correct to 3 significant [2]
(ii) 30 litres of coffee are poured into the container. Work out the height, h, of the empty space in the container
h=\ldots.........cm[3]
(iii) Cups in the shape of a hemisphere are filled with coffee from the container. The radius of a cup is 3.5 cm.
Work out the maximum number of these cups that can be completely filled from the 30 litres of coffee in the container. [The volume, V, of a sphere with radius r is V=\frac{4}{3}\pi r^{3}.] [4]
(b) The hotel also uses glasses in the shape of a cone.
The capacity of each glass is 95 cm^{3}.
(i) Calculate the radius, r and show that it rounds to 3.3 cm, correct to l decimal place, [The volume, V, of a cone with radius r and height h is V=\frac{1}{3}\pi r^{2}h.] [3]
(ii) Calculate the curved surface area of the cone. [The curved surface area, A of a cone with radius r and slant height l is A=\pi rl . cm^2\left[4\right]
20( 2017/\mathrm{w/41/img/q8a) }
The diagram shows a solid made from a hemisphere and a cone. The base diameter of the cone and the diameter of the hemisphere are each 5 mm.
(a) The total surface area of the solid is \frac {115\pi}4\mathrm{mm^{2}.} Show that the slant height, l is 6.5 mm. t height l is A=\pi rl.] [The curved surface area, A of a cone with radius r and slant height l is A=\pi rl.] [The surface area, A, of a sphere with radius r is A=4\pi r^2.] [4]

(b) Calculate the height, h, of the cone. h=...................mm~[3]

(c) Calculate the volume of the solid. [The volume, V of a cone with radius r and height h is V=\frac{1}{3}\pi r^{2}h.] [The volume, V of a sphere with radius r is V=\frac{4}{3}\pi r^{3}.] [4]

(d) The solid is made from gold 1 cubic centimetre of gold has a mass of 19.3 grams. The value of 1 gram of gold is $38.62 . Calculate the value of the gold used to make the solid [3]

Post a Comment

0 Comments