Algebra 1 (2017-2018)
11 | ( 2018/m/22/img/q9) \begin{array}{c}{'}\\{2^{p}=\frac{1}{8^{4}}}\end{array} Find the value of p. p=..................[2] |
12 | (2018/\mathfrak{m}/22/\mathfrak{img}/\mathfrak{q}13)
Solve the simultaneous equations. You must show all your working. 2x+\frac{1}{2}y=13 3x+2y=17 x=\dots\dots\dots\dots\dots y=\dots\dots\dots .......[3] |
13 | ( 2017/w/23/img/q6)
{\sqrt[3]{10}})^{2}=10^{p} Find the value of p. p=...........................[1] |
14 | ( 2017/w/23/img/q14) Solve by factorising. 3x^{2}-7x-20=0 x=.......... or x= ...........[3] |
15 | ( 2018/s/23/img/q9) Solve. \frac{1-p}{3}=4 p=........................[2] |
16 | ( 2018/w/23/img/q10) Solve. 3w-7=32 w=............[2] |
17 | ( 2017/w/41/img/q3) (a) Solve. 11x+15=3x-7 x=...................[2] \mathbf{( b) }( i) \quad Factorise.\quad x^2+ 9x- 22 ..... [2] ( \mathbf{ii}) \quad Solve. x^{2}+9x-22=0 x=............... or x=...............[1] (c) Rearrange y=\frac{2(x-a)}{x} to make x the subject. x=........................[4] ( \mathbf{d} ) \quad Simplify.\quad \frac {x^2- 6x}{x^2- 36} x=........................[3] |
18 | ( 2018/\mathrm{w/42/img/q2a) } (\mathbf{a}) Solve 30+2x=3(3-4x). x=..................[3] (b) Factorise 12ab^3+18a^3b^2. (c) Simplify. (\mathbf{i})\quad5a^3c^2\times2a^2c^7 .........[2] (ii)\quad \left ( \frac {16a^8}{c^{12}}\right ) ^{\frac 34}..........[2] (d) y is inversely proportional to the square of (x+2) When x=3,y=2. Find y when x=8. y=...............[3] (e) Write as a single fraction in its simplest form.\ldots\ldots[3] \frac5{x-2}-\frac{x-5}2 |
19 | ( 2017/s/43/img/q7) (a) Solve the simultaneous equations. You must show all your working. \begin{array}{l}2x+3y=11\\3x-5y=-50\end{array} x=................. y=...............[4] (\mathbf{b})\quad x^2-12x+a=(x+b)^2 Find the value of \alpha and the value of b. a=\ldots b=\ldots [3] (c) Write as a single fraction in its simplest form......[4] \frac x{2x-5}\:+\:\frac{3x+2}{x-1} |
20 |
( 2017/s/21/img/q5) Factorise completely. 12n^2-4mn \cdot\cdot\cdot\cdot\cdot\cdot[2] |
0 Comments